Page 2 of 24 FirstFirst 123412 ... LastLast
Results 16 to 30 of 359

Thread: Living in a material world

  1. #16
    Quote Originally Posted by hskwarrior View Post
    It does when she's watching me.

  2. #17
    Join Date
    Jun 2005
    Location
    San Francisco
    Posts
    10,576
    Blog Entries
    6
    It does when she's watching me.
    its not that type of party so proving it to me is wasting your time. it won't change the image you have created for yourself.
    Hung Sing Boyz, we gottit on lock down
    when he's around quick to ground and pound a clown
    Bruh we thought you knew better
    when it comes to head huntin, ain't no one can do it better

  3. #18
    Now I'm somethin' like a phenomenon
    I'm somethin' like a phenomenon
    Well I'm the hourglass cat
    Drug it out of jack

    For jill?

    Cause I spilled the phenomenon
    Pack the holes in my lawn
    The girls in my sauna
    Word is born I'm a livin' phenomenon

    - Pos


    http://youtu.be/EDyHftGcDKg

  4. #19
    MIT has K-12 articles too. Maybe you can start there.

  5. #20

  6. #21
    Join Date
    Aug 2007
    Location
    Midgard
    Posts
    10,852
    For whoso comes amongst many shall one day find that no one man is by so far the mightiest of all.

  7. #22
    Is this you, Lucas?

    http://youtu.be/yPDGCKFwt0w

  8. #23
    http://web.mit.edu/newsoffice/2013/s...tter-0410.html

    Shedding light on the search for dark matter
    Physicists and astronaut discuss cosmic ray detector’s findings of possible signs of dark matter.


    Two MIT physicists and an alumnus who’s a NASA astronaut spoke on campus earlier this week, describing an experiment that’s been 18 years in the making and yielded its first significant results just last week.

    The experiment, called the Alpha Magnetic Spectrometer, or AMS, was mounted on the side of the orbiting International Space Station (ISS) in May 2011, when it was delivered there by a space shuttle crew that included astronaut Michael Fincke ’89. Fincke has logged more time in space than any other active astronaut, having spent more than a year in space, including more than 50 hours on spacewalks.

    Fincke and Andrei Kounine, a senior researcher in MIT’s Laboratory for Nuclear Science and AMS’s coordinator for physics analysis, described the experiment’s results, and the process of getting the experiment into space. They were introduced by Samuel Ting, the Thomas D. Cabot Professor of Physics, who conceived of the AMS experiment 18 years ago and led its development and deployment. The $1.6 billion project ultimately involved 650 scientists from more than 50 universities and agencies in 16 countries.

    So far, the magnetic detector has recorded more than 30 billion “events” — impacts from cosmic rays. Of those, 6.8 billion have been identified as impacts from electrons or their antimatter counterpart, positrons — identified through comparisons of their numbers, energies and directions of origin.

    AMS’s most eagerly anticipated findings — observations that would either confirm or disprove the existence of theoretical particles that might be a component of dark matter — have yet to be made, but Ting expressed confidence that an answer to that question will be obtained once more data is collected. The experiment is designed to keep going for at least 10 years.

    In the meantime, the results so far — showing more positrons than expected — already demonstrate that new physical phenomena are being observed, Ting and Kounine said. What’s not yet clear is whether this is proof of dark matter in the form of exotic particles called neutralinos, which have been theorized but never observed, or whether it can instead be explained by emissions from distant pulsars.

    Kounine explained that in addition to its primary focus on identifying signs of dark matter, AMS is also capable of detecting a wide variety of phenomena involving particles in space. For example, he said, “it can identify all the species of ions that exist in space” — particles whose abundance may help to refine theories about the origins and interactions of matter in the universe. “It has great potential to produce a lot more physics results,” Kounine said.

    An answer on whether the observed particles are being produced by collisions of dark matter will come from graphing the numbers of electrons and positrons versus the energy of those particles. If the number of particles declines gradually toward higher energies, that would indicate their source is probably pulsars. But if it declines abruptly, that would be clear evidence of dark matter.

    “Clearly, these observations point to the existence of a new physical phenomenon,” Kounine said. “But we can’t tell [yet] whether it’s from a particle origin, or astrophysical.”

    Fincke, one of two astronauts who actually attached the AMS to the exterior of the ISS, said he was honored to have had the opportunity to deliver such an important payload. He was joined on the mission — the last flight of space shuttle Endeavour, and the second-to-last of NASA’s entire shuttle program — by another MIT alum, Greg Chamitoff PhD ’92.

    Before the mission, the Endeavour astronauts visited CERN in Switzerland, where AMS’s mission control center is located, to learn about the precious payload they would be installing, Fincke said. “That got our crew to be extremely motivated to ensure success,” he said.

    The device itself, Fincke explained, “was built to have as little interaction with astronauts as possible”: Once bolted into place, it requires no further attention. And while it was designed to withstand inadvertent impacts, he said that he and his fellow astronauts were careful to give it a wide berth. “We didn’t want to even get close,” he said.




    Astronaut Michael Fincke '89 captured this image of his own reflection during a spacewalk. The AMS, already installed on the International Space Station, is just behind him at top left.

  9. #24
    http://web.mit.edu/newsoffice/2013/n...sion-0405.html



    NASA selects MIT-led TESS project for 2017 mission
    $200 million project will launch telescopes to perform full-sky search for transiting exoplanets.


    Following a three-year competition, NASA has selected the Transiting Exoplanet Survey Satellite (TESS) project at MIT for a planned launch in 2017. The space agency announced the mission — to be funded by a $200 million grant to the MIT-led team — this afternoon.

    TESS team partners include the MIT Kavli Institute for Astrophysics and Space Research (MKI) and MIT Lincoln Laboratory; NASA’s Goddard Spaceflight Center; Orbital Sciences Corporation; NASA’s Ames Research Center; the Harvard-Smithsonian Center for Astrophysics; The Aerospace Corporation; and the Space Telescope Science Institute.

    The project, led by principal investigator George Ricker, a senior research scientist at MKI, will use an array of wide-field cameras to perform an all-sky survey to discover transiting exoplanets, ranging from Earth-sized planets to gas giants, in orbit around the brightest stars in the sun’s neighborhood.

    An exoplanet is a planet orbiting a star other than the sun; a transiting exoplanet is one that periodically eclipses its host star.

    “TESS will carry out the first space-borne all-sky transit survey, covering 400 times as much sky as any previous mission,” Ricker says. “It will identify thousands of new planets in the solar neighborhood, with a special focus on planets comparable in size to the Earth.”

    TESS relies upon a number of innovations developed by the MIT team over the past seven years. “For TESS, we were able to devise a special new ‘Goldilocks’ orbit for the spacecraft — one which is not too close, and not too far, from both the Earth and the moon,” Ricker says.

    As a result, every two weeks TESS approaches close enough to the Earth for high data-downlink rates, while remaining above the planet’s harmful radiation belts. This special orbit will remain stable for decades, keeping TESS’s sensitive cameras in a very stable temperature range.

    With TESS, it will be possible to study the masses, sizes, densities, orbits and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. TESS will provide prime targets for further characterization by the James Webb Space Telescope, as well as other large ground-based and space-based telescopes of the future.

    TESS project members include Ricker; Josh Winn, an associate professor of physics at MIT; and Sara Seager, a professor of planetary science and physics at MIT.

    “We’re very excited about TESS because it’s the natural next step in exoplanetary science,” Winn says.

    “The selection of TESS has just accelerated our chances of finding life on another planet within the next decade,” Seager adds.

    MKI research scientists Roland Vanderspek and Joel Villasenor will serve as deputy principal investigator and payload scientist, respectively. Principal research scientist Alan Levine serves as a co-investigator. Tony Smith of Lincoln Lab will manage the TESS payload effort, Lincoln Lab will develop the optical cameras and custom charge-coupled devices required by the mission.

    “NASA’s Explorer Program gives us a wonderful opportunity to carry out forefront space science with a relatively small university-based group and on a time scale well-matched to the rapidly evolving field of extrasolar planets,” says Jackie Hewitt, a professor of physics and director of the Kavli Institute for Astrophysics and Space Research. “At MIT, TESS has the involvement of faculty and research staff of the Kavli Institute, the Department of Physics, and the Department of Earth, Atmospheric, and Planetary Sciences, so we will be actively engaging students in this exciting work.”

    Previous sky surveys with ground-based telescopes have mainly picked out giant exoplanets. NASA’s Kepler spacecraft has recently uncovered the existence of many smaller exoplanets, but the stars Kepler examines are faint and difficult to study. In contrast, TESS will examine a large number of small planets around the very brightest stars in the sky.

    “The TESS legacy will be a catalog of the nearest and brightest main-sequence stars hosting transiting exoplanets, which will forever be the most favorable targets for detailed investigations,” Ricker said.

    The other mission selected today by NASA is the Neutron Star Interior Composition Explorer (NICER). It will be mounted on the International Space Station and measure the variability of cosmic X-ray sources, a process called X-ray timing, to explore the exotic states of matter within neutron stars and reveal their interior and surface compositions. NICER’s principal investigator is Keith Gendreau of NASA’s Goddard Space Flight Center in Greenbelt, Md. The MKI group, lead by Ricker, is also a partner in the NICER mission.

    “The Explorer Program has a long and stellar history of deploying truly innovative missions to study some of the most exciting questions in space science,” John Grunsfeld, NASA’s associate administrator for science, said in the space agency’s statement today. “With these missions we will learn about the most extreme states of matter by studying neutron stars and we will identify many nearby star systems with rocky planets in the habitable zone for further study by telescopes such as the James Webb Space Telescope.”

    The Explorer Program is NASA’s oldest continuous program and has launched more than 90 missions. It began in 1958 with the Explorer 1, which discovered the Earth’s radiation belts. Another Explorer mission, the Cosmic Background Explorer, led to a Nobel Prize. NASA’s Goddard Space Flight Center manages the program for the agency’s Science Mission Directorate in Washington.



    Artist's rendering of TESS in orbit
    ILLUSTRATION: CHET BEALS/MIT LINCOLN LAB

  10. #25
    http://med.stanford.edu/ism/2013/april/clarity.html




    Getting CLARITY: Hydrogel process developed at Stanford creates transparent brain

    BY ANDREW MYERS

    Combining neuroscience and chemical engineering, researchers at Stanford University have developed a process that renders a mouse brain transparent. The postmortem brain remains whole — not sliced or sectioned in any way — with its three-dimensional complexity of fine wiring and molecular structures completely intact and able to be measured and probed at will with visible light and chemicals.

    The process, called CLARITY, ushers in an entirely new era of whole-organ imaging that stands to fundamentally change our scientific understanding of the most-important-but-least-understood of organs, the brain, and potentially other organs, as well.

    The process is described in a paper published online April 10 in Nature by bioengineer and psychiatrist Karl Deisseroth, MD, PhD, leading a multidisciplinary team, including postdoctoral scholar Kwanghun Chung, PhD.

    "Studying intact systems with this sort of molecular resolution and global scope — to be able to see the fine detail and the big picture at the same time — has been a major unmet goal in biology, and a goal that CLARITY begins to address," Deisseroth said.

    "This feat of chemical engineering promises to transform the way we study the brain's anatomy and how disease changes it," said Thomas Insel, MD, director of the National Institute of Mental Health. "No longer will the in-depth study of our most important three-dimensional organ be constrained by two-dimensional methods."

    The research in this study was performed primarily on a mouse brain, but the researchers have used CLARITY on zebrafish and on preserved human brain samples with similar results, establishing a path for future studies of human samples and other organisms.

    "CLARITY promises to revolutionize our understanding of how local and global changes in brain structure and activity translate into behavior," said Paul Frankland, PhD, a senior scientist in neurosciences and mental health at the Hospital for Sick Children Research Institute in Toronto, who was not involved in the research. Frankland's colleague, senior scientist Sheena Josselyn, PhD, added that the process could turn the brain from "a mysterious black box" into something essentially transparent.

    An inscrutable place

    The mound of convoluted grey matter and wiring that is the brain is a complex and inscrutable place. Neuroscientists have struggled to fully understand its circuitry in their quest to comprehend how the brain works, and why, sometimes, it doesn't.

    CLARITY is the result of a research effort in Deisseroth's lab to extract the opaque elements — in particular the lipids — from a brain and yet keep the important features fully intact. Lipids are fatty molecules found throughout the brain and body. In the brain, especially, they help form cell membranes and give the brain much of its structure. Lipids pose a double challenge for biological study, however, because they make the brain largely impermeable both to chemicals and to light.

    Neuroscientists would have liked to extract the lipids to reveal the brain's fine structure without slicing or sectioning, but for one major hitch: removing these structurally important molecules causes the remaining tissue to fall apart.

    Prior investigations have focused instead on automating the slicing/sectioning approach, or in treating the brain with organic molecules that facilitate the penetration of light only, but not macromolecular probes. With CLARITY, Deisseroth's team has taken a fundamentally different approach.

    "We drew upon chemical engineering to transform biological tissue into a new state that is intact but optically transparent and permeable to macromolecules," said Chung, the paper's first author.

    This new form is created by replacing the brain's lipids with a hydrogel. The hydrogel is built from within the brain itself in a process conceptually similar to petrification, using what is initially a watery suspension of short, individual molecules known as hydrogel monomers. The intact, postmortem brain is immersed in the hydrogel solution and the monomers infuse the tissue. Then, when "thermally triggered," or heated slightly to about body temperature, the monomers begin to congeal into long molecular chains known as polymers, forming a mesh throughout the brain. This mesh holds everything together, but, importantly, it does not bind to the lipids.

    With the tissue shored up in this way, the team is able to vigorously and rapidly extract lipids through a process called electrophoresis. What remains is a 3-D, transparent brain with all of its important structures — neurons, axons, dendrites, synapses, proteins, nucleic acids and so forth — intact and in place.

    Going things one better

    CLARITY then goes one better. In preserving the full continuity of neuronal structures, CLARITY not only allows tracing of individual neural connections over long distances through the brain, but also provides a way to gather rich, molecular information describing a cell's function is that is not possible with other methods.

    "We thought that if we could remove the lipids nondestructively, we might be able to get both light and macromolecules to penetrate deep into tissue, allowing not only 3-D imaging, but also 3-D molecular analysis of the intact brain," said Deisseroth, who holds the D.H. Chen Professorship.

    Using fluorescent antibodies that are known to seek out and attach themselves only to specific proteins, Deisseroth's team showed that it can target specific structures within the CLARITY-modified — or "clarified" — mouse brain and make those structures and only those structures light up under illumination. The researchers can trace neural circuits through the entire brain or explore deeply into the nuances of local circuit wiring. They can see the relationships between cells and investigate subcellular structures. They can even look at chemical relationships of protein complexes, nucleic acids and neurotransmitters.

    "Being able to determine the molecular structure of various cells and their contacts through antibody staining is a core capability of CLARITY, separate from the optical transparency, which enables us to visualize relationships among brain components in fundamentally new ways," said Deisseroth, who is one of 15 experts on the "dream team" that will map out goals for the $100 million brain research initiative announced April 2 by President Obama.

    And in yet another significant capability from a research standpoint, researchers are now able to destain the clarified brain, flushing out the fluorescent antibodies and repeating the staining process anew using different antibodies to explore different molecular targets in the same brain. This staining/destaining process can be repeated multiple times, the authors showed, and the different data sets aligned with one another.

    Opening the door

    CLARITY has accordingly made it possible to perform highly detailed, fine-structural analysis on intact brains — even human tissues that have been preserved for many years, the team showed. Transforming human brains into transparent-but-stable specimens with accessible wiring and molecular detail may yield improved understanding of the structural underpinnings of brain function and disease.

    Beyond the immediate and apparent benefit to neuroscience, Deisseroth cautioned that CLARITY has leapfrogged our ability to deal with the data. "Turning massive amounts of data into useful insight poses immense computational challenges that will have to be addressed. We will have to develop improved computational approaches to image segmentation, 3-D image registration, automated tracing and image acquisition," he said.
    Indeed, such pressures will increase as CLARITY could begin to support a deeper understanding of large-scale intact biological systems and organs, perhaps even entire organisms.

    "Of particular interest for future study are intrasystem relationships, not only in the mammalian brain but also in other tissues or diseases for which full understanding is only possible when thorough analysis of single, intact systems can be conducted," Deisseroth said. "CLARITY may be applicable to any biological system, and it will be interesting to see how other branches of biology may put it to use."

    Other co-authors include undergraduate student Jenelle Wallace; graduate studentsSung-Yon Kim, Kelly Zalocusky, Joanna Mattis, Aleksandra Denisin and Logan Grosenick; research assistants Sandhiya Kalyanasundaram, Julie Mirzabekov, Sally Pak and Charu Ramakrishnan; postdoctoral scholars Aaron Andalman, PhD, and Tom Davidson, PhD; former undergraduate student Hannah Bernstein; and former staff scientist Viviana Gradinaru.

    The research is supported by the National Institute of Mental Health (grant MH099647); the National Science Foundation; the Simons Foundation; the President and Provost of Stanford University; the Wiegers, Snyder, Reeves, Gatsby and Yu foundations; the DARPA REPAIR program; and the Burroughs Wellcome Fund.

    Stanford's Department of Bioengineering also supported the work. The department is jointly operated by the School of Engineering and the School of Medicine.



    Intact adult mouse brain before and after the two-day CLARITY process. In the image on the right, the fine brain structures can be seen faintly as the areas of blurriness above the words "number," "unexplored," "continent" and "stretches." [Click the image for the high-resolution version.]

    Damn!!!
    Last edited by Syn7; 04-11-2013 at 01:40 PM.

  11. #26
    Join Date
    Aug 2007
    Location
    Midgard
    Posts
    10,852
    Quote Originally Posted by Syn7 View Post
    Is this you, Lucas?

    http://youtu.be/yPDGCKFwt0w
    Yes, yes it is. Oh wait, I mean no. No it is not. Sorry I got confused.
    For whoso comes amongst many shall one day find that no one man is by so far the mightiest of all.

  12. #27
    Read the fuckin article....!!!

    Expand, sucka!!!

  13. #28
    Join Date
    Aug 2007
    Location
    Midgard
    Posts
    10,852
    I am not understanding your hostility, Sir.
    For whoso comes amongst many shall one day find that no one man is by so far the mightiest of all.

  14. #29
    Jokes Lucas. Now read the articles!

  15. #30
    Join Date
    Aug 2007
    Location
    Midgard
    Posts
    10,852
    I know, I was joking back at you!!!!!

    For whoso comes amongst many shall one day find that no one man is by so far the mightiest of all.

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •